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Abstract

A lattice Boltzmann method (LBM) is used to solve the energy equation in a test problem involving thermal radi-

ation and to thus investigate the suitability of scalar diffusion LBM for a new class of problems. The problem chosen is

transient conductive and radiative heat transfer in a 2-D rectangular enclosure filled with an optically absorbing, emit-

ting and scattering medium. The energy equation of the problem is solved alternatively with a previously used finite

volume method (FVM) and with the LBM, while the radiative transfer equation is solved in both cases using the col-

lapsed dimension method. In a parametric study on the effects of the conduction–radiation parameter, extinction coef-

ficient, scattering albedo, and enclosure aspect ratio, FVM and LBM are compared in each case. It is found that, for

given level of accuracy, LBM converges in fewer iterations to the steady-state solution, independent of the influence of

radiation. On the other hand, the computational cost per iteration is higher for LBM than for the FVM for a simple

grid. For coupled radiation–diffusion, the LBM is faster than the FVM because the radiative transfer computation is

more time-consuming than that of diffusion.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Over the last 10 years, the lattice Boltzmann method

(LBM) has evolved as an alternative numerical approach

for the solution of a large class of problems [1–7]. Tradi-

tional CFD techniques solve the macroscopic trans-

port equations of fluid flow, mass and heat transfer by

directly discretizing them. Common numerical methods

for solving the Navier–Stokes equations and the energy
0017-9310/$ - see front matter � 2005 Elsevier Ltd. All rights reserv
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equation involve discretization of these nonlinear partial

differential equations by finite difference methods

(FDM), finite volume methods (FVM), etc. LBM use,

on the other hand, kinetic equation models and corre-

sponding relations between the actually simulated statis-

tical dynamics at a microscopic level and the transport

equations at the macroscopic level. This bottom–up

approach of LBM assures by construction the conserva-

tion of the relevant macroscopic quantities such as mass

and momentum [1]. LBM inherits many of the advanta-

ges of molecular dynamics and kinetic theories, due to its

microscopic origin. But it does not use complicated

kinetic equations. In comparison with the conventional

CFD methods, the advantages of LBM include simple
ed.
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Nomenclature

a anisotropy factor

C heat capacity

Cp specific heat at constant pressure

cj weight factor in the CDM

cv information propagation velocity on the lat-

tice

f(i) particle distribution density function in the

ith direction

f eq
ðiÞ equilibrium distribution density function in

the ith direction

w(i) weight factor in the ith lattice direction

G effective incident radiant energy

I effective intensity of radiation

K number of propagation directions in the lat-

tice

k thermal conductivity

M total number of rays (intensities)

N conduction–radiation parameter

QR radiative heat flux

r = (x,y) 2-D Cartesian coordinates

S source function

s geometric distance

T temperature

t time

Dt time step

DX, DY lengths of the enclosure in x- and y-direc-

tions lattice size in LBM or control volume

size in FVM and CDM

Greek symbols

a thermal diffusivity

b extinction coefficient

h planar angle

ja radiation absorption coefficient

g collapsing coefficient

e emissivity

q density

r Stefan–Boltzmann constant

rs scattering coefficient

s relaxation time

x scattering albedo

n(i) propagation vector in the ith lattice direc-

tion

f non-dimensional time (ab2t)
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calculation procedure, simple and efficient implementa-

tion for parallel computation, easy and robust handling

of complex geometries, and others [1–8]. The LBM is sec-

ond-order accurate in time and space, which is sufficient

for most engineering applications and, provided that

boundaries are appropriately treated, makes LBM com-

petitive for complex domain geometries.

Although the LBM has found wide usage in fluid

mechanics [1,9] and its application to heat transfer

problems is also gaining momentum [2,5–8,10–12], liter-

ature on its usage to solve heat transfer problems involv-

ing thermal radiation is scarce. Mishra and Lankadasu

[13] applied a LBM to solve transient conduction and

radiation heat transfer for the first time, for a case of

a 1-D planar absorbing, emitting and scattering med-

ium. They used the discrete transfer method to compute

the radiative information. For that case, the LBM was

found to provide accurate results but to be slower than

the FDM/FVM, both with and without radiation. On

the other hand, it has been established in hydrodynamic

applications that LBM have computational advantages

in multi-dimensional and complex geometries. LBM

are thus viewed as a possible alternative to the FVM

for computing the diffusive part of radiative–diffusive

heat transfer in such geometries.

The objective of the present work is to compare the

performance of the LBM in solving transient conduction
and radiation heat transfer in a simple 2-D geometry

against the performance of a standard CFD method.

To that end, a benchmark problem [14–17] dealing with

transient conduction and radiation heat transfer in a

2-D rectangular enclosure with absorbing, emitting and

scattering media is considered. The LBM performance

in solving the energy equation is compared against that

of a FVM. The collapsed dimension method (CDM) is

used to compute the radiative information [17,18]

required as source in the energy equation, both in com-

bination with the LBM and with the FVM. Results for

the effects of the conduction–radiation parameter N,

the scattering albedo x, the extinction coefficient b,
and the aspect ratio Y/X where X and Y are the dimen-

sions of the 2-D enclosure, are studied.

The paper is organized as follows. Section 2 intro-

duces the problem setting, including the relevant equa-

tions, boundary conditions, the studied parameter

ranges, as well as discretization aspects such as the reg-

ular grid structure and resolution, the CDM approach

to approximate the radiation equation, and the coupling

between the diffusion and the radiation solver. The pres-

ent article focuses on the LBM as diffusion solver, so a

separate Section 3 is devoted to its detailed description.

The results of the parametric study and the comparison

are presented in Section 4. The article concludes with a

brief discussion of these results.
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2. Formulation

The heat transfer in a 2-D rectangular enclosure

heated from below by sustaining the temperature of its

alls at time-independent but different temperatures is

considered. The naming of coordinate directions and

of enclosure walls is given in Fig. 1. With these, the ini-

tial condition at time t = 0 for the temperature field

T(x,y, t) is given by a constant T0:

T ðx; y; 0Þ ¼ T 0 ð1Þ

and the boundary conditions at t > 0 by

T ð0; y; tÞ ¼ T 0; T ðX ; y; tÞ ¼ T 0; ð2aÞ
T ðx; 0; tÞ ¼ T S; T ðx; Y ; tÞ ¼ T 0; ð2bÞ

where TS is another constant. This set of conditions is

formally inconsistent, because T(0,0, t) and T(X, 0, t)

are not uniquely defined. The mathematical solution to

the corresponding heat equation,

oT
ot

¼ ar2T þ QR

C
;

C ¼ qCR;

ð3Þ

has thus singularities confined to the lower edges of the

enclosure. Such problems are often encountered in the

engineering practice, despite their mathematical diffi-

culty and possible numerical instability, depending on

the method used. FVM work with integrated quantities

and can deal with the singularity without special effort.

It is of interest here to verify the robustness of LBM,

which is formally dealing only with point-values, in such

situations.

In Eq. (3) the thermophysical properties of the med-

ium, such as the density q, the specific heat Cp and heat

capacity C, and the thermal diffusivity a are assumed to

be constant. From a radiative energy transfer point of
Fig. 1. Geometry and the coordinates of the problem under

consideration. Nomenclature of the lattice in the LBM and the

control volume used in the CDM are also shown. Centres of the

lattices are the corners of the control volume where radiative

information are computed in the CDM.
view, the walls of the enclosure are considered to be dif-

fuse and gray, and the contained medium to be gray,

absorbing and emitting, anisotropically scattering, and

homogeneous. The optical properties of the radiating

medium are the

• scattering coefficient rs,
• absorption coefficient ja,
• extinction coefficient b = ja + rs,
• scattering albedo x = rs /b.

And are also assumed to be constant.

The energy equation (3) can be solved by standard

methods such as FDM or FVM, but also by LBM.

The radiative source QR in it can be provided by for

solving the radiative transfer equation (RTE), which

reads

d

d
Iðs; nÞ ¼ �bIðs; nÞ þ ja

rT 4

4p

þ rs

4p

I

jnj¼1

Uðn; n0ÞIðs; n0Þdn0 ð4Þ

in general. An approximate numerical solution of the

RTE can be obtained by any of the commonly used

methods, such as the discrete ordinate method, the dis-

crete transfer method, the finite volume method

(FVM), or the collapsed dimension method (CDM). In

this study, only the CDM is used to compute QR. This

method introduces a specific 2-D approximation for

the RTE.

2.1. Collapsed dimension method

In the CDM, the radiative source is given by [18]

QR ¼ gjaðG� prT 4Þ; ð5Þ

where g is the collapsing coefficient, ja is the absorption
coefficient and G is the effective incident radiation,

whose general form and CDM approximation [18] are

given by

G ¼
Z 2p

0

IðhÞdh �
XM
j¼1

IðhjÞDhj; ð6Þ

where h is the angle of the effective intensity I measured

from the control surface. The effective intensity at any

location in direction h in the solution plane is found

from the recursive use of the following equation:

Inþ1 ¼ ð1� kÞIn þ kSn; k ¼ 1� expð�gbDsÞ. ð7Þ

The basis for the approximate method (7) is the assump-

tion that the optical path-leg bDs between the down-

stream point (n + 1) and the upstream point n is small

enough and the source function S (given by Eq. (8)

below) is constant over this optical path-leg. For the
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case of a linear anisotropic phase function U with anisot-

ropy factor a, the source function S is given in the CDM

[18] in terms of G and QR as

S ¼ ja

rT 4

2
þ rs

2p
ðGþ aQR sin hÞ. ð8Þ

The net radiative heat flux QR is numerically evaluated

[18] in the CDM as

QR ¼
Z p

0

IðhÞ sin hdh�
Z 2p

p
IðhÞ sin hdh

�
XM=2

j¼1

cjIðhjÞ �
XM

j¼M=2þ1

cjIðhjÞ; ð9Þ

where the weight factor cj is chosen as

cj ¼ j cosðhj þ Dhj=2Þ � cosðhj � Dhj=2Þj. ð10Þ

In Eqs. (6) and (9), M is the number of effective intensi-

ties spanned over 0 6 h 6 2p, and Dhj is the discrete

angle in the 2-D plane over which the jth effective inten-

sity is assumed to be isotropic. In the present case, Dhj is
same for all effective intensities.

For a diffuse–gray boundary with temperature T0

and emissivity eb, the boundary data I0 for I are calcu-

lated in the CDM as follows:

I0 ¼ T 4
0eb=2þ JðI0Þð1� ebÞ=2;

JðIÞ ¼
Z p

0

IðhÞdh �
XM=2

j¼1

cjIðhjÞ.
ð11Þ

The CDM has been verified for a variety of test prob-

lems, including ones related to the one considered here,

but not in conjunction with LBM. More details on the

CDM can be found in [17,18].

2.2. Test problem

For the present validation purpose, only isotropic

scattering (a = 0) was considered. Throughout the simu-

lations, the south wall is kept at a constant temperature

TS, allowing the introduction of the conduction–radia-

tion parameter N as a constant characterizing a given

computation:

T S ¼ 2T 0; N ¼ kb=4rT 3
S. ð12Þ

Radiative information was computed using 32 rays in

the CDM. Uniform meshes of 20 · 20 control volumes

(CVs) were used in both FVM and LBM, which was

found sufficient for grid-independent results. The same

number of CVs was used in the CDM. (For the relation

between the different types of CVs see Fig. 1.) To solve

Eq. (3) by the FVM, the alternating direction implicit

scheme was employed. Both LBM and FVM were

applied as transient solvers with non-dimensional time

step of fixed, sufficiently small length:
Df ¼ 10�4; f ¼ ab2t.

The steady-state (SS) was assumed to be reached if the

relative point-wise temperature difference between two

consecutive time steps (at each lattice node in the

LBM or control volume centre in the FVM) did not

exceed 10�5.

The LBM and the FVM results, obtained in conjunc-

tion with the CDM, were first validated against those

available in the literature [14–17]. Results at different

time levels, obtained by coupling FVM with the CDM

as RTE solver, were further benchmarked again results

obtained by coupling FVM with the discrete transfer

method instead.
3. Lattice Boltzmann method

Although the discretized equation solved in LBM is

rather different from any other standard method for sim-

ulating heat and mass flow, it is in effect only one further

option to approximate numerically the diffusion-advec-

tion equations governing the computed flow. In the pres-

ent case, this is the heat flow equation

ðo=ot þ v � $ÞT ¼ ar2T þ Q

for the special case of no advection (v = 0) and a source

Q defined entirely by radiation. A detailed demonstra-

tion that the discrete evolution equation solved in the

LBM indeed approximates the above scalar flow equa-

tion is provided in Appendix A, while the computational

algorithm of the LBM is given immediately below. It

may appear unusual that, unlike standard methods

which are derived starting from the flow equation and

then applying various discretizations, in the LBM

approach the approximation to the flow equation is only

shown after the method is already postulated. On the

other hand, standard discretization methods require

such an a posteriori proof that they indeed approximate

the target equation. Also, different discretization meth-

ods have very different numerical properties and usually

have their specific jargon and notation. Thus, LBM

should be considered only as one of several alternatives

for solving the target flow equation. The selection of a

particular alternative for actual simulations is then dic-

tated not by theoretical, but by practical issues such as

robustness or speed. And LBM can have advantages

in such aspects while delivering a degree of approxima-

tion comparable to most other, customary methods.

3.1. Kinetic equation

The formal starting point for the analysis of any

LBM [1–4] is a discrete velocity model for a kinetic

equation, with collision kernel X(f), describing the evo-

lution of a distribution density function f of a scalar field
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such as the material density q of a continuum. In the

present case, the scalar field of interest is the tempera-

ture T(r, t).

The basis of the discrete velocity model is a finite set

of virtual velocities n(i) or equivalently, of virtual fluxes
of the considered scalar field, say T. To each such veloc-

ity or flux, a probability f(i) is associated, individually for

each location and time (r, t), in such a way that the scalar

field at that point is

T ðr; tÞ ¼
X
i

fðiÞðr; tÞ

and its observed flux is
P

ifðiÞðr; tÞn
ðiÞ.

The virtual velocities n(i) constitute a lattice stencil

characterizing the particular lattice Boltzmann model.

The well-known D2Q9 lattice model (Fig. 2) will be con-

sidered here. In that model, the set of n(i)�s is such that

they connect the point, on which the lattice stencil is cen-

tred, to its nearest neighbours on a spatial grid with uni-

form spacing in both coordinate directions (a lattice).

Any LBM advances the probability densities f(i)(r,t)

in time and thereby computes the evolution of the con-

sidered scalar. In the absence of external sources or

fluxes for the scalar, the corresponding discrete evolu-

tion equation can be written in the following general

form:

ðo=ot þ nðiÞ � $ÞfðiÞðr; tÞ ¼ Xi; i ¼ 0; 1; 2; . . . ;K. ð13Þ

The collision term Xi incorporates all the physics and

modeling of any particular problem at hand. The sim-

plest model for Xi is the Bhatnagar–Gross–Krook

(BGK) model [19]

Xi ¼ ðf eq

ðiÞ � fðiÞÞ=s. ð14Þ
∆y
 =

 ∆
x

∆x

0

2

4

6 5

7

3 1

8

Fig. 2. Schematic diagram of the D2Q9 lattice. The directions

of the eight non-zero propagation vectors n(1) through n(8) are
shown.
It is a single-relaxation-time model with relaxation con-

stant s that can be related, via Chapmann–Enskog analy-

sis, to the diffusivity (viscosity) of the medium. In original

BGK model, the equilibrium distribution density func-

tion is prescribed as Maxwellian. In all corresponding

lattice models, the discrete equilibrium density distribu-

tions f eq

ðiÞ are derived from that Maxwellian distribution

through an approximation consistent with the approxi-

mation of the continuous f by the discrete set of f(i)�s.

3.2. Lattice model

When convection can be neglected, the Maxwellian-

like equilibria are not shifted and a modified Chap-

mann–Enskog analysis with only one time scale is

relevant. The convective time scale is omitted and the

slower, diffusive scale is left [4]. The analysis then shows

(cf. also Appendix A) that the zero-order moment

M0½�� ¼
PK

i¼0ð�Þ, when applied to Eq. (13) with the

BGK term (14) substituted into the right-hand side,

gives a diffusion equation for the evolution of the scalar,

with a diffusivity proportional to s. The scalar itself is

obtained by applying M0 to the distribution density.

The above considerations are general. For the D2Q9

model in particular,

nð0Þ ¼ ð0; 0Þ; ð15aÞ
nð1Þ ¼ ðcv; 0Þ; nð2Þ ¼ ð0; cvÞ; ð15bÞ
nð3Þ ¼ ð�cv; 0Þ; nð4Þ ¼ ð0;�cvÞ; ð15cÞ
nð5Þ ¼ ðcv; cvÞ; nð6Þ ¼ ð�cv; cvÞ; ð15dÞ
nð7Þ ¼ ð�cv;�cvÞ; nð8Þ ¼ ðcv;�cvÞ. ð15eÞ

The equilibrium distributions are obtained from the

leading-order moments of the f(i)�s. In the present

case, there is no convection, so the first-order moment

vanishes, while the zero-order moment gives the temper-

ature, which is the scalar of interest here. This interpre-

tation of temperature as an independent scalar is clearly

distinct from that in the so-called thermal LBM. In the

present case and with the chosen model,

T ðr; tÞ ¼
XK
i¼0

fðiÞðr; tÞ ¼
XK
i¼0

f eq

ðiÞ ðr; tÞ;

f eq

ðiÞ ðr; tÞ ¼ wðiÞT ðr; tÞ; ð16Þ

wð0Þ ¼ 4=9; wðiÞ ¼ 1=9; i ¼ 1; . . . ; 4;

wðiÞ ¼ 1=36; i ¼ 5; . . . ; 8. ð17Þ
The following constraint imposed on lattice models may

be noted:

XK
i¼0

wðiÞ ¼ 1 ()
XK
i¼0

fðiÞ ¼
XK
i¼0

f eq

ðiÞ ; ð18aÞ

XK
i¼0

wðiÞn
ðiÞ ¼ 0 ()

XK
i¼0

nðiÞfðiÞ ¼
XK
i¼0

nðiÞf eq

ðiÞ . ð18bÞ
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3.3. The forced lattice Boltzmann equation

To represent the source term of the heat equation (3),

an additional term q(i) must be added to the right-hand

side of the kinetic equation (13), such that when M0 is

applied to it, the source term QR/C will result. This

can be done by emulating the construction of f eq

ðiÞ in

Eq. (16):

ðo=ot þ nðiÞ � $ÞfðiÞðr; tÞ ¼ ðf eq

ðiÞ � fðiÞÞ=sþ qðiÞ; ð19Þ
qðiÞ ¼ �wðiÞQR=C. ð20Þ

It is then standard for LBM to discretize the first-order

derivatives on the left-hand side of Eq. (19) by forward

first-order finite differences:

o

ot
fðiÞðr; tÞ ¼

fðiÞðr; t þ DtÞ � fðiÞðr; tÞ
Dt

þOðDtÞ;

nðiÞ � rfðiÞðr; tÞ ¼
fðiÞðrþ nðiÞDt; t þ DtÞ � fðiÞðr; t þ DtÞ

cvDt

þOðDtÞ.

The resulting fully discretized equation then reads

fðiÞðrþ nðiÞDt; t þ DtÞ
¼ fðiÞðr; tÞ þ ðf eq

ðiÞ ðr; tÞ � fðiÞðr; tÞÞDt=s� DtwðiÞQR=C.

ð21Þ

The relaxation time can be related with the thermal dif-

fusivity, the lattice velocity cv and the time step [2,4]

by the (approximate but practically precise) relation

s ¼ 3a=cv þ Dt=2. ð22Þ

This relation, as well as the derivation of the heat equa-

tion (3) from the kinetic equation (21), result from a

Chapmann–Enskog type of expansion mentioned

above and included for completeness of the article in

Appendix A.

3.4. Implementation of boundary conditions

In the present study, the energy equation is subjected

to Dirichlet boundary conditions. To assure that the

prescribed temperature values are exactly imposed, the

numerical grid is so constructed, that those grid points

updated by the LBM, which are closest to the domain

boundary in fact lie on it. For each of these points, there

is only one datum, namely the temperature value. (The

corner point issue has been discussed earlier. Here it suf-

fices to say that at the south–east and south–west edges

of the enclosure the value TS and not T0 was imposed.)

But there are at least three (for the D2Q9 model) lattice

directions, whose corresponding distribution density

functions are unknown. Fixing the number density on

the boundary [6,7,10,12] is required to impose the
Dirichlet condition for a scalar whose dynamics is simu-

lated with a LBM. From known boundary scalar density

and (in our case zero) velocity at the boundary, the equi-

librium distribution densities along all discrete directions

can be computed, cf. (20). For the non-equilibrium part

of those distribution densities, which correspond to

directions entering the computational domain, however,

assumptions have to be made. Most of the literature on

this aspect of LBM adopts some variant of the so-called

bounce-back rule for these densities: the incoming non-

equilibrium parts equal their outgoing counterparts

along the discrete direction exactly opposite to their

own.

It is recalled that the non-equilibrium parts fðiÞ � f eq

ðiÞ
carry the information about gradients of scalar flux.

When the scalar is mass density of a fluid moving with

velocity v(r, t), their second moment gives the stress ten-

sor which is proportional, as found by a Chapman–

Enskog analysis, to the strain tensor ($v + ($v)T)/2. In
the present case, their second moment is related to

$$T (cf. Appendix A).

If the field T(r, t) were stationary, and if there were to

be no scalar source, then $2T = 0 would hold and the

assumption of $$T = 0 would be a plausible approxima-

tion. It would in turn imply, if invariance with respect to

the discrete rotation group associated with the lattice

directions is required, a detailed balance of fluxes in

opposite directions, such as

ðf eq

ð1Þð0; y; tÞ � fð1Þð0; y; tÞÞ þ ðf eq

ð3Þð0; y; tÞ � fð3Þð0; y; tÞÞ ¼ 0

ð23Þ

for a point on the west wall. In the present case, the

walls of the enclosure are kept at constant temperature,

so thermal equilibrium in the walls and thus absence

of thermal source exactly on the boundary can be as-

sumed. Moreover, the purpose of the computation is

the achievement of a steady-state. On these grounds,

the detailed cancellation described above will be as-

sumed and used to specify the boundary conditions.

The above (anti)symmetry relation of corresponding

non-equilibrium pairs is an instantaneous equality and

not, as in the usual bounce-back rule which assumes that

the domain boundary is half-way between neighbouring

lattice sites, an equality with phase shift of one time step.

It leads to a unique rule for treating the Dirichlet bound-

ary conditions, which will now be illustrated on the

example of a lattice grid point (0,y) lying on the west

boundary. The three unknown incoming particle distri-

bution density functions are f(1), f(5), and f(8) (cf. Fig.

2). In view of Eq. (16), one has e.g.

f eq

ð1Þð0; y; tÞ ¼ f eq

ð3Þð0; y; tÞ ¼ wð1ÞT ð0; y; tÞ ¼ T 0=9 ð24Þ

for all times tP 0. Thus, using the flux balance (23), the

unknown density function
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fð1Þð0; y; tÞ ¼ f eq

ð1Þð0; y; tÞ � fð3Þð0; y; tÞ þ f eq

ð3Þð0; y; tÞ

¼ ð2=9ÞT 0 � fð3Þð0; y; tÞ. ð25Þ

All other cases of lattice directions and wall locations

are treated similarly, cf. Appendix B.
Table 1

Effect of grid size in the LBM on non-dimensional temperature

at three locations along the centreline x/X = 0.5
3.5. Solution procedure

It is now possible to formulate the LBM simulation

procedure in full. The numerical grids, the initialization

procedure and the time stepping procedure are specified

in order.

The medium is divided into a finite number of control

volumes. The nodes of the control volume faces at which

the radiative information is computed in the CDM are

the centres of the lattices in the LBM (Fig. 1). To satisfy

the boundary conditions, the LBM grid points are taken

to lie precisely on the boundary. Thus, the LBM control

volumes along the boundary extend beyond the bound-

aries a distance equal to half the lattice size in the respec-

tive coordinate directions (Fig. 1).

The LBM initialization procedure for the energy

equation follows:

1. Calculate the relaxation time s from Eq. (22).

2. Given the initial temperature field, compute

f eq

ðiÞ ðr; t ¼ 0Þ from Eq. (16) and then set fðiÞðr; 0Þ ¼
f eq

ðiÞ ðr; 0Þ.

The procedure for solving the energy equation using

the LBM is to repeat at every time step the following

sequence:

1. With the temperature field known, calculate the heat

source QR using the CDM.

2. Calculate now the particle distribution functions

f(i)(r + nDt, t + Dt) using Eq. (21).

3. Propagate the particle distribution functions to the

neighbouring nodes.

4. Calculate the new temperature field T(r, t) using Eq.

(16).

5. Check for convergence and terminate the cycle, if

appropriate.

6. Modify the particle distribution functions locally, to

satisfy the boundary conditions.

7. Compute the equilibrium distribution function

f eq

ðiÞ ðr; tÞ from the new temperature field, using Eq.

(16), separately for every lattice node.
Resolution y/Y = 0.25 y/Y = 0.5 y/Y = 0.75

8 · 8 0.7792 0.6453 0.5647

12 · 12 0.7815 0.6464 0.5648

16 · 16 0.7817 0.6469 0.5653

20 · 20 0.7820 0.6470 0.5654

40 · 40 0.7821 0.6473 0.5656
4. Results and discussion

We investigate first the effect of LBM grid size on

non-dimensional temperature T/TS by comparing the
steady-state (SS) results at three locations along the

centreline x/X = 0.5 of the enclosure. Results obtained

for aspect ratio X/Y = 1, extinction coefficient b = 1,

scattering albedo x = 0.5, and conduction–radiation

parameter N = 0.1, are listed in Table 1. It is seen that

on grids 20 · 20 and larger, the maximum variation in

temperature is less than 5 · 10�4. The trend observed

with other sets of parameters was similar, and need

not be reproduced here. It was decided to use 20 · 20

grids as basis for the subsequent computations. To facil-

itate the comparison of results, all further reported data

were taken only at x/X = 0.5. They represent the normal-

ized temperature T/TS as function of the normalized

distance y/Y to the ‘‘south’’ wall, which is kept at tem-

perature TS.

These results are summarized in Figs. 3–6. The effect

of the conduction–radiation parameter N is demon-

strated in Fig. 3 (see also Fig. 4b). The effect of the

extinction coefficient b is shown in Fig. 4, and that of

the scattering albedo x in Fig. 5. The results in these fig-

ures are obtained for X/Y = 1. The effect of the aspect

ratio is illustrated in Fig. 6, where the presented data

are obtained for X/Y = 10 and are close to those for a

1-D planar medium.

A radiation-dominated solution (N = 0.01, Fig. 3a)

can be compared to a conduction-dominated solution

(N = 1, Fig. 3b) for an absorbing–emitting medium (no

scattering, x = 0) in Fig. 3. The SS results by the LBM

and the FVM compare very well. It can also be seen that

at certain times there is mismatch in the transient results

of the two methods, whereby the LBM results are

slightly closer to the SS. This in agreement with a gen-

eral observation (Table 2) that the LBM converges faster

than the FVM to a SS. Finally, it is observed that the

difference in the SS results by the two methods is more

significant in the conduction-dominated case. This may

be related to a lager difference in the number of itera-

tions (Table 2) needed by the two methods in that case.

The effect of the extinction coefficient b is shown,

again for an absorbing–emitting isotropic (x = 0) med-

ium with N = 0.1, in Fig. 4. Two values of the extinction

coefficient are compared: b = 0.1 (weakly participating

medium, Fig. 4a) and b = 1 (strongly participating, Fig.

4b). The steady-state LBM and the FVM results are in

a very good agreement. The LBM reaches SS faster.
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The effect of scattering is similarly presented in Fig.

5, for fixed N = 0.01 and b = 1. The scattering albedo
is set to nonzero values: x = 0.5 (scattering comparable

to absorption, Fig. 5a) and x = 0.9 (strong scattering,



Table 2

Comparison of the number of iterations required to obtain steady-state solutions with the LBM and the FVM, and of the

corresponding CPU times ratio LBM/FVM, for 20 · 20 (40 · 40) control volumes

N x LBM FVM FVM/LBM Figure

0.01 0 642 (644) 663 (729) 1.05 (1.09) 3a

0.01 0.5 823 (825) 850 (930) 1.04 (1.10) 5a

0.01 0.9 1449 (1454) 1498 (1631) 1.03 (1.12) 5b

0.1 0 1682 (1689) 1738 (1895) 1.08 (1.10) 4b

1 0 1894 (1968) 2024 (2202) 1.07 (1.12) 3b

The same computer and the same CDM code with b = 1 was used to compute radiative information with both heat equation solvers.

ω = 0

1D  FVM
2D  LBM

β = 1

N=1

N=0.01

0.1

te
m

pe
ra

tu
re

  T
/T

S

distance  y/Y
0  0.2  0.4  0.6  0.8 1

 0.5

1

 0.9

 0.8

 0.7

 0.6

ω=0.1

0.5
ω=0.9

distance  y/Y

N = 0.01 β = 1

1D  FVM
2D  LBMte

m
pe

ra
tu

re
  T

/T
S

0  1 0.8 0.6 0.4 0.2
 0.5

 0.9

1

 0.8

 0.7

 0.6

(a) (b)

Fig. 6. Comparison of steady-state 2-D LBM and 1-D FVM results for the centreline temperature T/TS at aspect ratio X/Y = 10.
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Fig. 5b). With scattering, too, the SS obtained by the

LBM and the FVM agree very well and the LBM is fas-

ter to reach it.

The effect of aspect ratio is illustrated in Fig. 6. In

order to present it along with the effect of N or x, only
SS solutions are plotted. (The trend in the transient evo-

lution, established in the previous figures, is discussed

below.) The LBM results shown in this figure are for

an aspect ratio X/Y = 10, large enough to approximate

in the center of the enclosure with respect to the x-coor-

dinate the temperature distribution in a 1-D slab geo-

metry. To verify this expectation, these 2-D LBM

simulation data are compared to predictions by a 1-D

FVM–CDM code. Since the LBM grid cells must be

squares, the one used here was 20:20, while the 1-D grid

for the FVM had 100 cells. The non-scattering (x = 0)

media appearing in Figs. 3 and 4b are compared in

Fig. 6a. The scattering media from Fig. 5 (N = 0.01)

are compared, along with a weakly scattering one

(x = 0.1) in Fig. 6b. Although a slight finite-aspect-ratio

effect can be discerned, the observed agreement between

the 2-D LBM and the 1-D FVM results is very good.

It was observed that, as seen in Figs. 3–5, the LBM

converges to the SS solution of the heat equation (3)

faster, in terms of iteration number, than the FVM.

To substantiate this quantitatively, data on the number

of iterations and the relative CPU times required to

compute the data in the mentioned figures are presented
in Table 2. Also given (cited in brackets) are correspond-

ing data for a 40 · 40 grid, to illustrate the effect of dou-

bling the resolution on the two methods compared. The

LBM is faster, due to a slightly lower number of itera-

tions required for convergence. This advantage is more

pronounced on the larger grid.

Let it be mentioned for reference, that when solving

the transient 2-D conductive heat equation (3) without

radiation (QR = 0) but with the same initial and bound-

ary conditions for T as before, the relation between the

two methods is somewhat different: The number of iter-

ations was still smaller with the LBM than with the

FVM (respectively 3056 and 3653) but the CPU time

required by the LBM was about four times that of the

FVM. It is the radiation transfer computation, which

is very expensive even when using the presently fastest

methods like CDM in 2-D, that turns the LBM into

the method of choice because of its faster convergence

in terms of number of iteration steps. Its advantage

would become significant on larger grids.
5. Conclusions

A simple lattice Boltzmann method (LBM) was intro-

duced as solver for the energy equation in 2-D transient

conduction and radiation heat transfer problems. Its per-

formance was studied on the example of isotropic gray
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radiation in a rectangular enclosure with constant phys-

ical properties, by comparing it to a finite volume method

(FVM). With both methods, the collapsed dimension

method (CDM) was used to compute the radiative source

term in the energy equation. The effects of various pro-

perties of the enclosure (its aspect ratio, the conduc-

tion–radiation parameter, the extinction coefficient, and

the scattering albedo of the gray medium in it) were illus-

trated by a parametric study. Comparison of the data

obtained in that study by both solvers, based on LBM

and on FVM, showed very good agreement in the

steady-state results. The LBM was found to be accurate

and to require slightly fewer steps to converge to a

steady-state.

The considered 2-D geometry was a simple one, to

allow simple validation. Advection and other heat

sources, such as combustion, were omitted. Thus, it re-

mains to demonstrate the viability of the LBM as heat

diffusion-advection solver and its robustness in the pres-

ence of considerable advection as well as of additional

heat sources, especially localized ones. The results pre-

sented here and the efficacy and robustness of LBM

in complex flows, known from the literature, allow

the expectation that LBM may have advantages over

conventional energy equation solvers, especially if the

geometry or the physics of the problem is complex.

The results were obtained with very small grids, start-

ing at 20 · 20 control volumes. This was found sufficient

for the present purpose of verification and comparison.

With increasing complexity, the grid size of future appli-

cations will increase. The presented results imply that

the advantage of the LBM will then be more pro-

nounced. Moreover, for very large problems the use of

LBM will bring additional advantages on parallel com-

puting platforms.
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Appendix A

The starting point of the analysis is an assumption of

sufficient numerical resolution, in the form of a small

parameter 0 < e = Dy/Y� 1, in which Dx = Dy = nDt is
the LBM grid step size and Y is a length scale characteri-

zing the spatial structure of the solution of Eq. (3). In

the present article, the test problem of heat transfer in

a rectangular enclosure with dimensions X P Y is con-

sidered, and it was found empirically that taking

Dy = Y/20, i.e. e = 0.05, provides sufficient precision.
It is well known from standard numerical analysis

of parabolic differential equations that, as the spatial

grid step Dx of a solution algorithm for the standard

heat transfer equation is decreased, the time step of an

explicit time-marching scheme must decrease like

Dt = O(Dx2) in order to assure numerical stability. All

LBM are based on explicit time stepping. When applied

as heat equation solvers, their resolution must scale

accordingly [4]:

Dx ¼ Dy ¼ eY ; Dt ¼ e2tc; ðA:1Þ
o=ox ¼ eo0x; o=ot ¼ e2o0t; ðA:2Þ

where tc is a characteristic time scale, tc � C with C

defined in Eq. (3). Then introduce

oðiÞ ¼ nðiÞ � r; o0ðiÞ ¼ nðiÞx o0x þ nðiÞy o0y . ðA:3Þ

At this point, the assumption that all f(i)�s are close to

their respective f eq

ðiÞ �s will be recalled. This has been the

sole justification for introducing the BGK model in the

first place. Here, it will be interpreted as implying that

fðiÞ ¼ f eq

ðiÞ þ f 0
ðiÞeþOðeÞ2; qðiÞ ¼ eq0ðiÞ;

f eq

ðiÞ ; f
0
ðiÞ; q

0
ðiÞ ¼ Oð1Þ ) f 0

ðiÞ ¼ ðq0ðiÞ � o
0
ðiÞf

eq

ðiÞ Þs. ðA:4Þ

It is further noted that, using Eq. (18b) and a similar

relation for second moments, one can show that

M1½f eq� ¼
XK
i¼0

nðiÞf eq

ðiÞ ¼ 0;

M2½f eq� ¼
XK
i¼0

nðiÞ � nðiÞf eq

ðiÞ ¼ ðcv=3ÞI ; ðA:5Þ

where I denotes the identity operator and the factor 1/3

is specific to the lattice model used, namely D2Q9. Since

M1[q
0] = (QR/C)M1[f

eq] = 0 in view of (A.5), the decom-

position (A.4) implies also

M1½f 0� ¼
XK
i¼0

nðiÞf 0
ðiÞ ¼ 0. ðA:6Þ

Expanding the left-hand side function in Eq. (21),

fðiÞðrþ nðiÞDt; t þ DtÞ
¼ fðiÞðr; tÞ þ ½ðot þ oðiÞÞfðiÞ�ðr; tÞDt
þ ½ðot þ oðiÞÞ2fðiÞ�ðr; tÞðDtÞ2=2þOðDtÞ3

¼ fðiÞðr; tÞ þ ½Dto0ðiÞfðiÞ�ðr; tÞeþ ½ðDto0t
þ ðDto0ðiÞÞ

2
=2ÞfðiÞ�ðr; tÞe2 þOðeÞ3 þOðDtÞ3 ðA:7Þ

and then applying M0½�� ¼
PK

i¼0ð�Þ to Eq. (21), leads

upon use of (A.5) and (A.6) to

F 0 þ F 1e ¼ QR=C þOðeÞ2Dt þOðeÞ3=Dt þOðDt2Þ;

F 0 ¼ e2o0t
XK
i¼0

fðiÞ ¼ otT ; F 1 ¼
XK
i¼0

o0ðiÞfðiÞ.

ðA:8Þ
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Since M1[q
0] = (QR/C)M1[f

eq] = 0 in view of (A.5), the

decomposition (A.4) leads to the estimate

eF 1 ¼ er0 �M1½f eq þ f 0
ðiÞeþOðeÞ2�

¼ esr �M1½q0ðiÞ � o0ðiÞf
eq

ðiÞ � þ er0 �M1½OðeÞ2�

¼ �srr : M2½f eq� þ r0 �M1½OðeÞ3�
¼ ð�r2T Þscv=3þOðeÞ3.

Inserting now the results for F0 and F1 into the first

equation in (A.8) yields

QR ¼ ðF 0 þ F 1eÞ þ ðOðDtÞ2 þOðeÞ3=Dt þOðeÞ2DtÞ
¼ ðo=ot � ðs� Dt=2Þcv=3ÞT ðr; tÞ þ ðOðDtÞ2

þOðeÞ3=Dt þOðeÞ2DtÞ. ðA:9Þ

The error term O(e)3 of eF1 has been absorbed into

O(e)3/Dt. The error terms in (A.9) are dominated either

(i) by the O(e)3/Dt term when e > O(Dt), or (ii) by an

O(Dt)2 contribution when DtP O(e). One of the

retained terms, F0, was formally of O(e)2, so the option

(i) must be excluded. For the remaining option (ii), an

approximation to Eq. (3) of second order, i.e. with error

terms of O(Dt)2, can be obtained from (A.9) by requiring

the relation (22) between diffusivity and relaxation

parameter. Another implication of (ii) is, in view of

the decomposition (A.4), that jfðiÞ � f eq

ðiÞ j 6 OðDtÞ.
Appendix B

The densities to be specified on the west boundary are

f(1), f(5), and f(8). The case of f(1)was considered in the

main text. The other two follow in the same way, the

overall result being

fð1Þð0; y; tÞ ¼ ð2=9ÞT 0 � fð3Þð0; y; tÞ;
fð5Þð0; y; tÞ ¼ ð1=18ÞT 0 � fð7Þð0; y; tÞ;
fð8Þð0; y; tÞ ¼ ð1=18ÞT 0 � fð6Þð0; y; tÞ.

The unknowns on the east boundary are computed by

‘‘inverting’’ the above relations:

fð3ÞðX ; y; tÞ ¼ ð2=9ÞT 0 � fð1ÞðX ; y; tÞ;
fð6ÞðX ; y; tÞ ¼ ð1=18ÞT 0 � fð8ÞðX ; y; tÞ;
fð7ÞðX ; y; tÞ ¼ ð1=18ÞT 0 � fð5ÞðX ; y; tÞ.

Similarly, on the north boundary,

fð4Þðx; Y ; tÞ ¼ ð2=9ÞT 0 � fð2Þðx; Y ; tÞ;
fð7Þðx; Y ; tÞ ¼ ð1=18ÞT 0 � fð5Þðx; Y ; tÞ;
fð8Þðx; Y ; tÞ ¼ ð1=18ÞT 0 � fð6Þðx; Y ; tÞ.

On the sound boundary, the imposed value of the tem-

perature is different:
fð2Þðx; 0; tÞ ¼ ð2=9ÞT S � fð4Þðx; 0; tÞ;
fð5Þðx; 0; tÞ ¼ ð1=18ÞT S � fð7Þðx; 0; tÞ;
fð6Þðx; 0; tÞ ¼ ð1=18ÞT S � fð8Þðx; 0; tÞ.
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